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Abstract

In this study, it is demonstrated that clamped–clamped heterogeneous Bernoulli–Euler beams and the
Kirchhoff–Love annular plate that is clamped along both inner and outer perimeters possess the common
fundamental mode shape that is a fourth-order polynomial. This remarkable finding leads to the possibility
of vibration tailoring, namely, the analytical design of annular heterogeneous plate with a pre-specified
natural frequency.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The vibration of circular and annular plates was investigated in much detail by Leissa [1]. The
researches conducted during about 25 years were analyzed in Refs. [2–4]. In some papers the
solution is conducted in exact terms. Exact solution of homogeneous uniform plates is found in
terms of Bessel functions. Hypergeometric functions were utilized by Lizarev and Kuzmentsov [5].
Prasad et al. [6] investigated plates with linearly varying thickness, whereas Barakat and Baumann
[7] considered the case of parabolic variation. Kirkhope and Wilson [8] utilized the finite element
method. The closed-form solution for the annular plate having a parabolic thickness variation
was derived by Lenox and Conway [9]. This pioneering solution is remarkable in the sense that the
closed-form solution was derived for polynomially varying flexural rigidity.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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In a recent monograph [10] vibration and buckling of heterogeneous structures were studied in
a closed form. It turned out that the heterogeneous beams or plates may possess mode shapes that
are represented as fourth or higher-order polynomial functions or constitute rational expressions.
Likewise, as Ref. [11] proved, the exact mode shape may also be represented as a trigonometric
function. To the best of our knowledge, there are no homogeneous structures, which possess
polynomial or rational mode shapes. The closed-form solutions were derived in Ref. [10] for
various structures with variable modulus of elasticity. This finding opens new avenues of
producing tailored structures, i.e. those systems that meet specific pre-set criteria. These criteria
may consist in the demand that the static displacement under specified load to be less than
indicated; or natural frequency not to exceed a selected value; or buckling load to be not less than
a chosen load, etc. In all these cases, one can come up with an analytical expression of the
variation of the modulus of elasticity that meets either of the above requirements. This remarkable
feature of heterogeneous structures, uncovered in monograph [10] and some references cited
therein, is generalized in the present study, to prove the statement in its title.
The free vibration of the heterogeneous Bernoulli–Euler terms that are clamped at both ends

was studied in Ref. [10]. It was shown that the simple polynomial function

Y ðxÞ ¼ x2 � 2x3 þ x4 (1)

may serve as an exact mode shape of an heterogeneous Bernoulli–Euler beam, x ¼ x=L being the
non-dimensional axial coordinate, x is the axial coordinate and L is the length of the beam. The
corresponding variation of the modulus of elasticity is

EðxÞ ¼ �ð11
18
þ 2x=3þ x2=3� 2x3 þ x4Þb4, (2)

where b4 is a negative real number.
Due to arbitrariness of negative coefficient b4, we conclude that there are infinite amount of

beams that have the mode shape in Eq. (1).
In this study we demonstrate that a heterogeneous annular plate may possess the suitably

transformed mode shape given in Eq. (1). This remarkable phenomenon does not occur in
homogeneous and uniform structures, to the best of our knowledge; it is possible due to the
heterogeneity of the annular plate and the corresponding beam. Note that the transformation of
the coordinates was also utilized by Ramiah and Vijayakumar [12], but not in the context of exact
solution.
2. Basic equations

The differential equation that governs the axisymmetric vibrations of annular inhomogeneous
plates reads:

DðrÞr3r2r2wþ ðdD=drÞ½2r3 d3w=dr3 þ r2ð2þ nÞd2w=dr2 � rdw=dr�

þ ðr3d2w=dr2 þ nr2 dw=drÞd2D=dr2 � rho2r2w ¼ 0, ð3Þ

where r2 is the Laplacian operator in polar coordinates:

r2 ¼ d2=dr2 þ ð1=rÞd=dr, (4)
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D is the flexural rigidity, which varies along the radial coordinate r

D ¼ DðrÞ ¼ EðrÞh3=½12ð1� n2Þ�, (5)

where h is the thickness, n the Poisson ratio, r the material density, r the radial coordinate, and
w(r) is the mode shape. Poisson’s ratio is assumed to be a constant. The inertial term rh is likewise
assumed to be a constant. The variation of the flexural rigidity is due to the fact that the modulus
of elasticity is a function of the radial coordinate, i.e. E ¼ EðrÞ.
The candidate mode shape for the plate is obtained from Eq. (1) by the following substitution:

x ¼ ðr� riÞ=ðr0 � riÞ (6)

and reads:

wðrÞ ¼ ½ðr� riÞ=ðr0 � riÞ�
2 � 2½ðr� riÞ=ðr0 � riÞ�

3 þ ½ðr� riÞ=ðr0 � riÞ�
4. (7)

The problem is defined as follows: determine the distribution of the flexural rigidity DðrÞ that is
proportional to the variable modulus of elasticity in Eq. (5), so that the governing equation (1) is
satisfied. It must be noted immediately that the distribution of DðrÞ for the annular plate could be
anticipated to be different from that of the clamped beam. This is due to the fact that the
governing differential equations differ from each other for these two structural configurations.
Contrary to the intuitive anticipation, it will be shown that these two structures possess the same
mode shape with transformation in Eq. (6) in mind.
It is seen from the analysis of the governing differential equation that the flexural rigidity in the

form of fourth-order polynomial is compatible with the fourth-order polynomial representing the
mode shape in Eq. (1); in other words, the flexural rigidity is represented as

DðrÞ ¼ b0 þ b1ðr=RiÞ þ b2ðr=RiÞ
2
þ b3ðr=RiÞ

3
þ b4ðr=RiÞ

4. (8)

Substituting Eqs. (7) and (8) into the governing equation (1) we get the following equation:
X

X ir
i=ð�Ro þ RiÞ

4
¼ 0, (9)

where i ¼ 0; 1; 2; . . . ; 7 and

X 0 ¼ R4
i ð�2boR5

i R2
o � 2boR6

i RoÞ, (10)

X 1 ¼ 0, (11)

X 2 ¼ R4
i ð�18boR4

i Ro þ 2b2R
3
i R2

o þ 2b2R
4
i Ro � 18boR5

i þ 2b1R
3
i R2

o þ 8b1R
4
i Ro

þ 2b1R
5
i nþ 2b1R

5
i þ 2b1R

3
i nR

2
o þ 8b1R

4
i nRo � 4b2R

3
i nR2

o � 4b2R
4
i nRoÞ, ð12Þ

X 3 ¼ R4
i ð�60b1R

3
i Ro þ 4b3R

2
i R2

o þ 4b3R
3
i Ro þ 64boR4

i � 60b1R
4
i � 12b1R

4
i n

þ 8b2R
2
i R2

o þ 32b2R
3
i Ro þ 8b2R

4
i nþ 8b2R

4
i � 12b1R

3
i Ronþ 8b2R

2
i R2

on

þ 32b2R
3
i Ron� 12b3R

2
i R2

on� 12b3R
3
i Ron� rho2R6

i R2
oÞ, ð13Þ
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X 4 ¼ R4
i ð�126b2R

2
i Ro þ 6b4RiR

2
o þ 6b4RoR2

i þ 132b1R
3
i � 126b2R

3
i þ 1261R

3
i n

� 36b2R
3
i nþ 18b3RiR

2
o þ 72b3R

2
i Ro þ 18b3R

3
i nþ 18b3R

3
i � 36b2R

2
i Ronþ 18b3RiR

2
on

þ 72b3R
2
i Ron� 24b4RiR

2
on� 24b4RoR2

i nþ 2rho2R5
i R2

o þ 2rho2R6
i RoÞ, ð14Þ

X 5 ¼ R4
i ð�216b3RiRo � 224b2R

2
i � 216b3R

2
i þ 32b2R

2
i n� 72b3R

2
i n

þ 128b4RoRi þ 32b4R
2
onþ 32b4R

2
i nþ 32b4b

2
o þ 32b4R

2
i � 72b3RiRon

þ 128b4RoRin� rho2R4
i R2

o � 4rho2R5
i Ro � rho2R6

i Þ, ð15Þ

X 6 ¼ R4
i ð340b3Ri � 330b4Ro � 330b4Ri þ 60b3Rin� 120b4Ron� 120b4Rin

þ 2rho2R4
i Ro þ 2rho2R5

i Þ, ð16Þ

X 7 ¼ R4
i ð480b4 þ 96b4n� rho2R4

i Þ. (17)

From the requirement X 7 ¼ 0, where X 7 is defined in Eq. (17) we obtain the natural frequency
squared:

o2 ¼ 96ð5þ nÞb4=rhR4
i . (18)

In order for the natural frequency to be a positive quantity, b4 must be positive. Thus, whereas
the clamped–clamped beam coefficient b4 must be negative, for the plate it must be positive. This
fact constitutes a qualitative difference between the beam and plate results.
From the equation X 6 ¼ 0 we get

b3 ¼ 3b4ð215þ 52nÞðRi þ RoÞ=10ð3nþ 17ÞRi. (19)

Equation X 5 ¼ 0 yields

b2 ¼ f½5377nðR2
i þ R2

oÞ þ ð1474þ 888nÞnRiRo þ 924n2ðR2
i þ R2

oÞ

� 8690RiRo þ 6535ðR2
i þ R2

oÞ�=40ð17þ 3nÞð7þ nÞgb4. ð20Þ

The coefficient b1 is obtained from solving equation X 4 ¼ 0

b1 ¼ 3f½1944ðRi þ RoÞn3RiRo þ ð146895þ 13126n2ÞRoR2
i

þ ð9650þ 1224n3ÞðR3
i þ R3

oÞ þ ð27685þ 25701nÞðR3
i þ R3

oÞ þ 27685R3
i

þ ð28021þ 113574nÞRiR
2
o=80ð17þ 3nÞð11þ nÞR3

i gb4. ð21Þ

Finally, b0 is derived from the requirement X 3 ¼ 0:

b0 ¼ 0. (22)
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Fig. 1. Vibration in the flexural rigidity vs. the radial coordinate.
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Substituting the expressions for bj into Eq. (8), we get the final expression for the flexural
rigidity:

DðrÞ=b4 ¼ 3f½1944ðRi þ RoÞn3RiRo þ ð146895þ 13126n2ÞRoR2
i þ ð9650þ 1224n3ÞðR3

i þ R3
oÞ

þ ð27685þ 25701nÞðR3
i þ R3

oÞ þ 27685R3
i

þ ð28021þ 113574nÞRiR
2
o=80ð17þ 3nÞð11þ nÞR3

i gðr=RiÞ

þ f½5377nðR2
i þ R2

oÞ þ ð1474þ 888nÞnRiRo þ 924n2ðR2
i þ R2

oÞ � 8690RiRo

þ 6535ðR2
i þ R2

oÞ�=40ð17þ 3nÞð7þ nÞgðr=RiÞ
2

þ 3ð215þ 52nÞðRi þ RoÞ=10ð3nþ 17ÞRiðr=RiÞ
3
þ ðr=RiÞ4. ð23Þ

For each value of b440, we get a separate distribution for the flexural rigidity DðrÞ that
corresponds to the heterogeneous plate with mode shape given in Eq. (7). Note that since b0 ¼ 0,
DðrÞ vanishes at r ¼ 0; however, the point r ¼ 0 is outside the area of the annular plate. In other
words, the positivity of DðrÞ is maintained for RiprpRo.
For values a ¼ Ri=Ro ¼ 1=3, n ¼ 0:3, and b4 ¼ 1 we get

b1 ¼ 112; 368; 408=1; 476; 571 � 76:101,

b2 ¼ 722; 612=65; 335 � 11:060,

b3 ¼ 13; 836=895 � 15:459.

Fig. 1 depicts the variation of the flexural rigidity versus the radial coordinate r for Ri ¼ 1.

3. Conclusion

This paper presents a remarkable case of heterogeneous annular plate that shares the
fundamental mode shape with the heterogeneous beam; the annular plate is clamped at inner and
outer circumferences, whereas the beam is clamped at both ends.
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The finding is of obvious theoretical interest as an amusing fact that takes place for a
heterogeneous plate; practical significance of this work lies in the possibility of choosing the free
parameter b4 so that the annular plate possesses the pre-set natural frequency O. Indeed, from Eq.
(8), we deduce that if

b4 ¼ rhR4
i O

2=ð5þ nÞ (24)

then the plate possesses the desired natural frequency O. Thus, a simple method of vibration
tailoring is being presented by this paper, as a by-product of the closed-form analysis.
It is also remarkable that Eq. (18) for the natural frequency squared coincides formally with its

counterpart circular plate in Ref. [9]. This sharing of the same natural frequency is usually referred
to as isospectrality. Here we established coincidence of analytic expressions for the fundamental
frequency, while the corresponding flexural rigidities differ. For other exciting isospectral studies,
one can consult the study by Gottlieb [13].
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